在18世纪,伟大的瑞士数学家莱昂哈德·欧拉(Leonhard Euler,1707—1783)进一步证明了上述论断的逆命题,即每一个偶完美数都属于这一类型。这样,欧几里得和欧拉共同建立了一个梅森素数和偶完美数之间的一一对应关系。可是,下一个问题出现了:所有的梅森数都是素数吗?很遗憾,并非如此。失败仅咫尺之遥,因为第五个梅森数等于211-1=2047=23×89。 的确,我们甚至不知道梅森素数的数列是否会终结——也许最终,在某个点之后所有的梅森数都是合数。
尽管如此,梅森数依然是素数的候选,因为可以证明,一个梅森数m的任何真因数——假如存在的话——拥有2kp+1这样的特定形式。比如,当p=11,借助这个结论,我们只需检验被形如22k+1的素数除的情况。这两个素因数23和89,分别对应于值k=1和k=4。这个关于梅森数因数的事实还带来一个意外之喜,它提供了第二种方法,使我们看出一定存在无穷多素数。因为它表明,2p-1的最小素因数大于p,因而p不可能是最大的素数。由于这适用于任意素数p,我们可以推断不存在最大的素数,于是素数数列可以永远延续下去。